
CS4605 Final Exam Questions

Summer 2004

George W. Dinolt

September 15, 2004

Introduction

You should print out a hard copy of this exam, if you have not already done so. Please
answer all the questions on these pages. Make sure your name is on the title page and each
separate sheet, if the pages are not stapled together. You may also create an electronic copy
which you may fill in and send to John Clark via email. Be sure that your name is on the
pages that you send him. If you send him an email copy, your exam has not been “accepted”
until you receive a receipt by return mail.

The exam is due to John Clark, SP 531A, or via email at 0900 hrs on Wednes-
day, Sept. 22, 2004.

The exam is made up of three parts, several PVS theorems to be proved, a pvs specifi-
cation to be fixed and a series of questions to be answered. You may use your class notes
and slides and papers and books you have read to answer any of the questions. If you use a
paper as a source, please give a reference to the paper.

You can attach the evidence of your “proofs” as a separate sheet to the exam.
Several of the questions are based on the paper THE CHINESE WALL SECURITY

POLICY, by David Brewer and Michael Nash published in the proceedings of the 1989
IEEE Symposium on Security and Privacy. You can find the paper on the CD that I
handed out in class. You should read this paper and try to make some sense of the model.

1



The Questions

1. Briefly describe each of the security policies. It would be helpful if you used the same
terms, preferably the ones we talked about in class, for each of the policies.

(a) Mandatory Access Control Policy

(b) Discretionary Access Control Policy

(c) High Water-mark

(d) Chinese Wall

(e) Biba Integrity Policy

2



(f) Role Based Access Control Policy

(g) Clark/Wilson Policy

(h) Non-Interference (Goguen/Meseguer)

2. Which of the above policies could be used together on the same system?

3



3. In the class, we have described the process of the application of “formal methods” to
the design and implementation of secure systems. What is this process?

4. What reasons are there for not using formal methods on a project?

5. What reasons are there for using formal methods on a project?

4



6. In the Landwehr paper Formal Models for Computer Security that we discussed in
class, where does the Chinese Wall Policy fit in the table “Comparisons of Properties
of Models” on page “273”? You should add a column to the table that includes the
Chinese Wall Security Policy. Explain the meaning of the entries to the table that you
add and why you put them there.

5



The Biba Security Model

As you may remember, the Biba Integrity Model is similar to the Bell & LaPadual Model

in the sense that there are subjects, objects and labels. In the Biba case, they are called
Integrity Labels. The basic idea is that a subject should only read information of higher
integrity and write information at lower integrity. Information at high integrity should not
be compromised by information at low integrity.

The goal of this exercise is to show that PVS may be useful in finding flaws in specifi-
cations. I have constructed a specification of the Biba Integrity Model. Unfortunately, the
specification has a problem. One can prove that the empty state is secure but one cannot
prove that the transform function is secure.

Your job is to find out where the proof fails, and as a result find the simple (single) place
in the specification where a change can be made that will allow you to complete the proof.
The change you make should maintain the spirit of the Biba Policy.

In your exersize below, you should not use grind or similar commands. The work should
be accomplished using the various commands we have illustrated in the other exersizes.

What you should Hand In

1. You should provide enough detail about the proof of the transformSecure lemma that
will show exactly where the problem arises, i.e. the place where the hypotheses and
the conclusions contradict each other,

2. You should provide a corrected version of the specification, highlighting the change(s)
that you have made and why you made the changes, and finally

3. You should provide a proof of the transformSecure lemma using your new specifica-
tion.

Make sure that your name and the label “Biba Model” is on every page you hand in, to
ensure we know which proof to credit.

The Specification

You can download the “broken” specification from
http://www.nps.navy.mil/cs/dinolt/Courses/AY2004/Summer/CS4605/Final/Biba.pvs
or on proof in the file /disk1/cisr/pvs-examples/Final/Biba.pvs. It is also presented
below.

6

http://www.nps.navy.mil/cs/dinolt/Courses/AY2004/Summer/CS4605/Final/Biba.pvs


biba: theory

begin

Subjects: type+

Objects: type+

AccessModes: type =

{read, write}

Labels: type+ =

{i: nat | i ≤ 4}

Accesses: type+ =

[# sub: Subjects,
ob: Objects,
am: AccessModes #]

State: type+ = setof[Accesses]

OLB: [Objects → Labels]

SLB: [Subjects → Labels]

transform(a: Accesses, s: State): State =

if (a‘am = read ∧ SLB(a‘sub) ≥ OLB(a‘ob)) ∨
(a‘am = write ∧ SLB(a‘sub) ≥ OLB(a‘ob))

then (s ∪ {a})
else s

endif

secureAccess?(a: Accesses): bool =

if a‘am = read
then SLB(a‘sub) ≤ OLB(a‘ob)

else SLB(a‘sub) ≥ OLB(a‘ob)
endif

secureState?(s: State): bool =

∀ (a: Accesses):
s(a) ⇒ secureAccess?(a)

secureEmpty: lemma

7



secureState?(emptyset)

transformSecure: lemma

∀ (a: Accesses, s: State):
secureState?(s) ⇒
secureState?(transform

(a, s))

end biba

8



The Chinese Wall Security Model Specification

Below is a specification of the Chinese Wall security model. It does not look quite the same
as the specification in the paper, but one can prove the basic theorems from the paper with
the specification provided.

I have provided 4 LEMMA’s and one THEOREM. These mimic the equivalent statements
in the Brewer/Nash paper. They all follow directly from the definitions SECURE_ELEMENT
and SECURESTATE. You may notice that I have used XOR instead of the operator OR
used in the paper. It turns out that TH1 isn’t true if one uses OR.

The XOR operator needs some special handling in PVS. It needs to be expanded. Sup-
pose one has

(x = y) XOR (u = v)

as part of either a hypothesis or conclusion. When one expands XOR, one obtains

(x = y) 6= (u = v)

where the symbol 6= is the “not-equal” sign in PVS. Either of the statements means that
exactly one of (x = y) and (u = v) is true and the other is false, that is they both can’t be
true and they both can’t be false. To simplify handling of the 6= one can use the command
bddsimp (binary decision diagram and simplification). The command takes no arguements.
It separates the inequality up into cases.

Other than these hints, be prepared to look at substitutions using the replace command
and carefully manage your instantiations.

What you should prove

You should provide proofs only of AX1, emptySecure and TH1. You should hand in
sufficient evidence to show that you have completed the proofs. You should not use grind or
similar commands.

The LEMMAS AX2 and AddToEmpty are provided purely for illustration purposes.
Each takes about 50 steps and doesn’t succumb to the grind command. If you are interested,
you might want to try them.

You can find the specification below and on the Web on my home pages.

chinesewall: theory

begin

Subjects: type+

Objects: type+

ConflictDomains: type+

9



Companies: type+

Label: type+ =

[# cd: ConflictDomains,
cp: Companies #]

LB: [Objects → Label]

NType: type+ =

[# sb: Subjects, ob: Objects #]

X(ob: Objects): ConflictDomains =

LB(ob)‘cd

Y (ob: Objects): Companies =

LB(ob)‘cp

NState: type = setof[NType]

SECURE_ELEMENT(N: NState, nx: NType): bool =

∀ (na: NType):
N(na) ∧ sb(na) = sb(nx) ⇒
(¬ (X(ob(na)) = X(ob(nx))) xor

(Y (ob(na)) =
Y (ob(nx))))

SECURESTATE(N: NState): bool =

∀ (nx: NType):
N(nx) ⇒
SECURE_ELEMENT(N, nx)

EMPTYSubject(N: NState, s: Subjects): bool =

∀ (na: NType):
sb(na) = s ⇒
¬ (na ∈ N)

AX1: lemma

∀ (N: NState, na, nb: NType):
SECURESTATE(N) ∧
sb(na) = sb(nb) ∧
N(na) ∧ N(nb) ∧ Y (ob(na)) = Y (ob(nb))

⇒ X(ob(na)) = X(ob(nb))

10



emptySecure: lemma

∀ (N: NState):
N = emptyset ⇒
SECURESTATE(N)

TH1: theorem

∀ (N: NState, nsx, nsy: NType):
SECURESTATE(N) ∧ N(nsx) ∧ N(nsy) ∧ sb(nsx) = sb(nsy)
⇒
Y (ob(nsx)) = Y (ob(nsy)) ∨
¬ (X(ob(nsx)) =

X(ob(nsy)))

AddToEMPTYSubjectSecure: lemma

∀ (N: NState, ns: NType):
SECURESTATE(N) ∧ EMPTYSubject(N, sb(ns)) ⇒
SECURESTATE((N ∪ {ns}))

AX2: lemma

∀ (N: NState, nx: NType):
SECURESTATE(N) ∧
(∀ (nb: NType):

N(nb) ∧ sb(nb) = sb(nx) ⇒
(¬ (X(ob(nb)) = X(ob(nx))) xor

Y (ob(nb)) = Y (ob(nx))))
⇒
SECURESTATE((N ∪ {nx}))

end chinesewall

11


